Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Cell Mol Life Sci ; 81(1): 153, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38538865

N-methyl-D-aspartate receptors (NMDARs) are members of the glutamate receptor family and participate in excitatory postsynaptic transmission throughout the central nervous system. Genetic variants in GRIN genes encoding NMDAR subunits are associated with a spectrum of neurological disorders. The M3 transmembrane helices of the NMDAR couple directly to the agonist-binding domains and form a helical bundle crossing in the closed receptors that occludes the pore. The M3 functions as a transduction element whose conformational change couples ligand binding to opening of an ion conducting pore. In this study, we report the functional consequences of 48 de novo missense variants in GRIN1, GRIN2A, and GRIN2B that alter residues in the M3 transmembrane helix. These de novo variants were identified in children with neurological and neuropsychiatric disorders including epilepsy, developmental delay, intellectual disability, hypotonia and attention deficit hyperactivity disorder. All 48 variants in M3 for which comprehensive testing was completed produce a gain-of-function (28/48) compared to loss-of-function (9/48); 11 variants had an indeterminant phenotype. This supports the idea that a key structural feature of the M3 gate exists to stabilize the closed state so that agonist binding can drive channel opening. Given that most M3 variants enhance channel gating, we assessed the potency of FDA-approved NMDAR channel blockers on these variant receptors. These data provide new insight into the structure-function relationship of the NMDAR gate, and suggest that variants within the M3 transmembrane helix produce a gain-of-function.


Epilepsy , Receptors, N-Methyl-D-Aspartate , Child , Humans , Receptors, N-Methyl-D-Aspartate/metabolism , Signal Transduction , Epilepsy/genetics , Mutation, Missense , Phenotype
2.
J AAPOS ; 26(1): 42-43, 2022 02.
Article En | MEDLINE | ID: mdl-34798293

Acute-onset anisocoria or mydriasis in children carries a broad differential diagnosis and includes both benign and life-threatening causes, ranging from systemic or topical drug use to peripheral or central nervous system disease. The topical anticholinergic agent glycopyrronium (approved by the Food and Drug Administration in June 2018) is used to treat hyperhidrosis. We present the first case series of pediatric patients presenting with acute mydriasis due to exposure to glycopyrronium wipes. Six cases (ages 12-16) were identified: 3 presented emergently and 3 to a primary care physician. Additional symptoms included blurry vision (4/6) and unilateral headache (1/6). In 3 cases, use of glycopyrronium wipes was not elicited initially, neuroimaging was obtained, and ophthalmology (2/3) or neurology (1/3) was consulted. One patient remained undiagnosed and presented emergently again 2 months later. In all patients, symptoms resolved without further treatment.


Hyperhidrosis , Mydriasis , Adolescent , Anisocoria/chemically induced , Anisocoria/diagnosis , Antiperspirants/therapeutic use , Child , Glycopyrrolate , Humans , Hyperhidrosis/chemically induced , Hyperhidrosis/drug therapy , Mydriasis/chemically induced , Mydriasis/diagnosis
3.
Surv Ophthalmol ; 66(2): 354-361, 2021.
Article En | MEDLINE | ID: mdl-33058927

The coronavirus (COVID-19) pandemic temporarily suspended medical student involvement in clinical rotations, resulting in the need to develop virtual clinical experiences. The cancellation of clinical ophthalmology electives and away rotations reduces opportunities for exposure to the field, to network with faculty, conduct research, and prepare for residency applications. We review the literature and discuss the impact and consequences of COVID-19 on undergraduate medical education with an emphasis on ophthalmic undergraduate medical education. We also discuss innovative learning modalities used from medical schools around the world during the COVID-19 pandemic such as virtual didactics, online cases, and telehealth. Finally, we describe a novel, virtual neuro-ophthalmology elective created to educate medical students on neuro-ophthalmology foundational principles, provide research and presentation opportunities, and build relationships with faculty members. These innovative approaches represent a step forward in further improving medical education in ophthalmology during COVID-19 pandemic and beyond.


COVID-19/epidemiology , Education, Medical, Undergraduate/methods , Internship and Residency/methods , Ophthalmology/education , Pandemics , Students, Medical , Telemedicine/methods , Curriculum , Humans
4.
PLoS Genet ; 13(1): e1006536, 2017 Jan.
Article En | MEDLINE | ID: mdl-28095420

N-methyl-D-aspartate receptors (NMDARs), ligand-gated ionotropic glutamate receptors, play key roles in normal brain development and various neurological disorders. Here we use standing variation data from the human population to assess which protein domains within NMDAR GluN1, GluN2A and GluN2B subunits show the strongest signal for being depleted of missense variants. We find that this includes the GluN2 pre-M1 helix and linker between the agonist-binding domain (ABD) and first transmembrane domain (M1). We then evaluate the functional changes of multiple missense mutations in the NMDAR pre-M1 helix found in children with epilepsy and developmental delay. We find mutant GluN1/GluN2A receptors exhibit prolonged glutamate response time course for channels containing 1 or 2 GluN2A-P552R subunits, and a slow rise time only for receptors with 2 mutant subunits, suggesting rearrangement of one GluN2A pre-M1 helix is sufficient for rapid activation. GluN2A-P552R and analogous mutations in other GluN subunits increased the agonist potency and slowed response time course, suggesting a functionally conserved role for this residue. Although there is no detectable change in surface expression or open probability for GluN2A-P552R, the prolonged response time course for receptors that contained GluN2A-P552R increased charge transfer for synaptic-like activation, which should promote excitotoxic damage. Transfection of cultured neurons with GluN2A-P552R prolonged EPSPs, and triggered pronounced dendritic swelling in addition to excitotoxicity, which were both attenuated by memantine. These data implicate the pre-M1 region in gating, provide insight into how different subunits contribute to gating, and suggest that mutations in the pre-M1 helix can compromise neuronal health. Evaluation of FDA-approved NMDAR inhibitors on the mutant NMDAR-mediated current response and neuronal damage provides a potential clinical path to treat individuals harboring similar mutations in NMDARs.


Ion Channel Gating , Mutation, Missense , Nerve Tissue Proteins/metabolism , Nervous System Diseases/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Cells, Cultured , Excitatory Amino Acid Antagonists/pharmacology , Glutamic Acid/metabolism , HEK293 Cells , Humans , Memantine/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Neurons/metabolism , Neurons/physiology , Protein Domains , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Xenopus
...